A noninformative Bayesian approach to domain estimation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A noninformative Bayesian approach to domain estimation

SUMMARY Rather than an estimate of the population mean or total sometimes an estimate of the mean or total of a subpopulation or domain is desired. For such problems the number of units in the sample that fall into the domain is a random variable. This causes some complications for the usual frequen-tist approach. Here we give a simple and coherent noninformative Bayesian approach to domain est...

متن کامل

A noninformative Bayesian approach to small area estimation

1 SUMMARY In small area estimation one uses data from similar domains to estimate the mean in a particular small area. This borrowing of strength is justified by assuming a model which relates the small area means. Here we suggest a noninformative or objective Bayesian approach to small area estimation. Using this approach one can estimate population parameters other than means and find sensibl...

متن کامل

Noninformative Nonparametric Bayesian Estimation of Quantiles

In 1981 Rubin introduced the Bayesian bootstrap and argued that it was the natural Bayesian analogue to the usual bootstrap. We show here that when estimating a population quantile in a nonparametric problem it yields estimators that are often preferred to the natural naive estimators based on the order statistic. AMS 1980 Subject Classification: 62G05, 62C15 and 62G30

متن کامل

A noninformative Bayesian approach for two-stage cluster sampling

SUMMARY The polya posterior gives a noninformative Bayesian justification for various single-stage sampling procedures. Here this type of reasoning is extended to two-stage cluster sampling problems. The frequency properties of the resulting procedures are studied.

متن کامل

Bayesian wavelet-based image estimation using noninformative priors

The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these de ciencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2005

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2004.06.040